Energy services and life satisfaction: a study on households in two Mexican communities

Jordi Cravioto C. Eiji Yamasue

College of Science and Technology Ritsumeikan University, Japan

Energy for Society

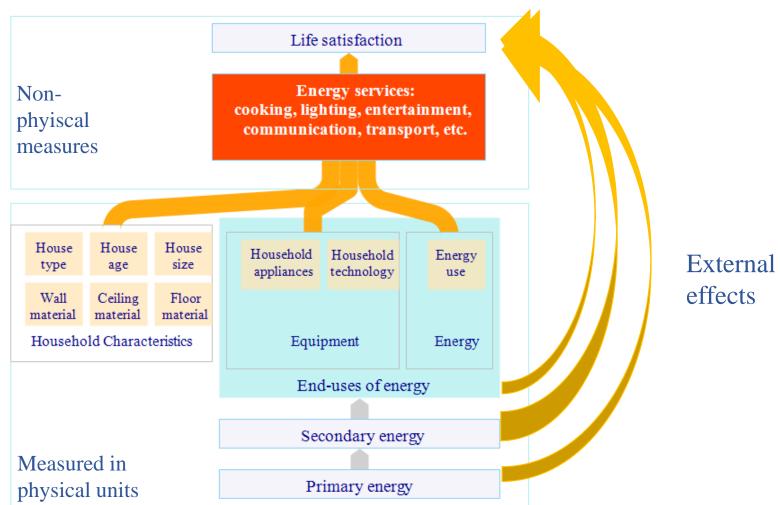
1st International Conference on Energy Research & Social Science
2017.04.03

Background of energy and well-being research

Historical approaches

Human development and energy use (19th cent – Spencer 1880, White 1949)

Expansion of empirical work (20th/21st cent)


- Economic indices as well-being measures (60s ~ Schurr 1960, Naseri 2000)
- Alternative indices of well-being (70s ~ Mazur 1974, 2011, Rosa 1988, Knight 2011)
- Further connections: poverty, externalities, public opinion, behavioural aspects, etc. (80's ∼ Boardman 1991, Jackson 2005, etc.)
- Linking concepts between ends (Modi 2006, Sovacool 2011, Cravioto 2014)

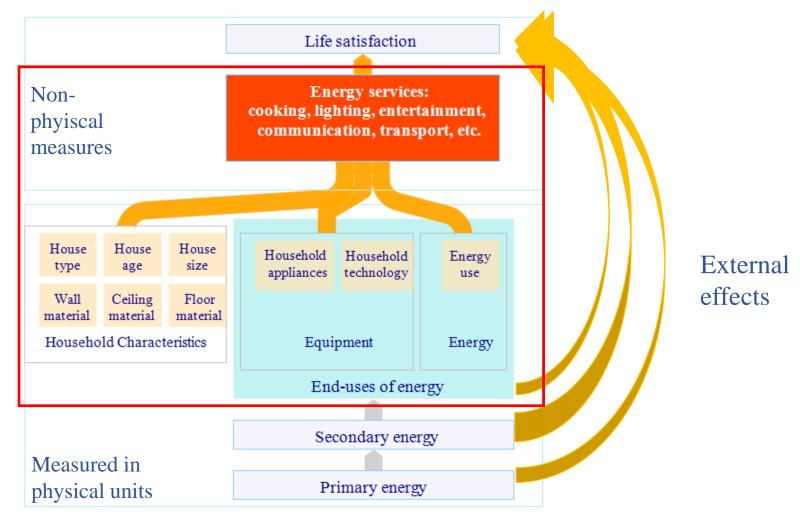
Contributions: macroscale theory, disciplinary analyses Research necessity:

bond using linking concepts, holistic perspectives, context differences

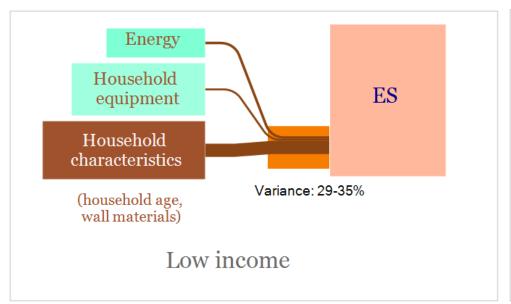
How energy use exactly contributes to higher well-being levels?

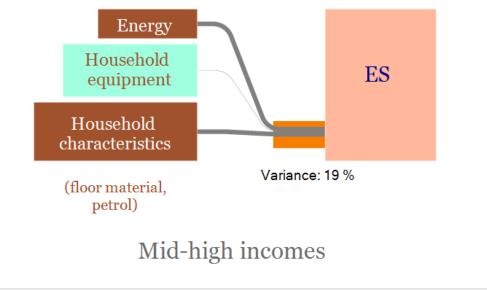
Energy consumption and life satisfaction diagram

Literature on household and energy services


Household-scale descriptions of energy-well-being link

 Fewer in literature, isolating energy from other elements is difficult


Energy services (ES): a novel approach

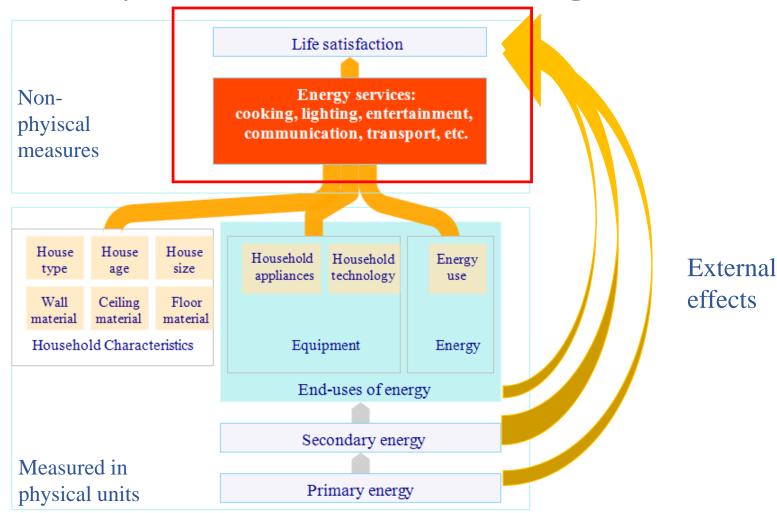

- Previous analyses take ES for end-uses (physical/economical units)
- In reality ES are applications of end-uses of energy (at households) + other elements
- ES can come closer to be human well-being surrogates of energy consumption (using an alternative measurement)

Energy consumption and life satisfaction diagram

Energy services and material predictors*

- Household features can largely predict ES satisfaction levels
- Energy is relevant from mid incomes on

Theory: energy services ladder* / hypothesis


	Income level		
	Low	Med	High
	< \$10k	\$10-20k	>\$20k
Fuels utilised	biomass, charcoal, paraffin, kerosene, petrol, LPG, gas, electricity	electricity, natural gas, LPG, kerosene, petrol	electricity, natural gas, petrol
Energy services in household	cooking, lighting, entertainment, communication, transport	all previous + heating-cooling space, advanced telecom, automatic clothes washing, etc.	all previous + luxury related (heated pool, toilet washlet & heated, TV sets in kitchens, etc.)
Driving force behind energy use	subsistence	convenience, comfort, cleanliness	conspicuous consumption, social signalling
How meaningful are ES (for LS levels)?	More	Less	lesser

*Sovacool, 2011 7

Purpose

- Measure six ES as real well-being surrogates
- Analyse relationship with overall life satisfaction

Energy consumption and life satisfaction diagram

Survey collection

Region selection

Two sites in the Mexican central plateau

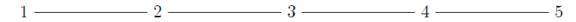
- Similar language, traditions, religion, climate (temperate)
- Different socio-economic levels.

Cuauhtémoc [15,636 dls/year]

Zoquitlán [2,208 dls/year]

Collection and sample

Survey in randomly selected households.


98 questionnaires: 58 from Cuauhtémoc and 40 from Zoquitlán

Method: Survey

Questionnaire

Well-being measure (R. Veenhoven):

Taking everything into account, how satisfied or dissatisfied are you currently with your life as a whole?

Dissatisfied Satisfied

• Six ES: illumination, temperature regulation, food

In a five-point scale, rate how satisfied or dissatisfied you are currently with the following ES at home?

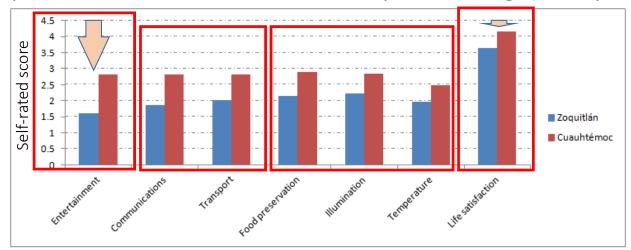
(1 being very dissatisfied and 5 very satisfied) ______

Analysis approach

Description by region

Statistics/distributions

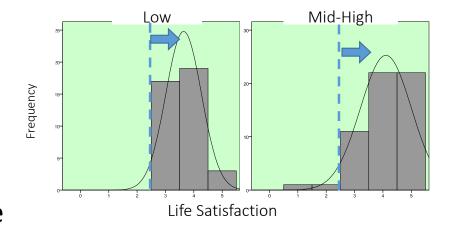
ES as a single construct

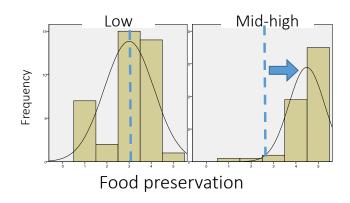

Principal Component Analysis (PCA)

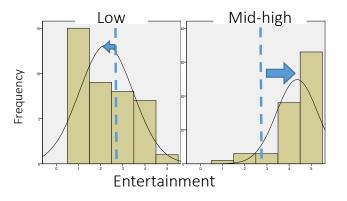
ES-LS association

- Correlations
 - Spearman Rho, Kendall Tau, Gamma (ordinal)

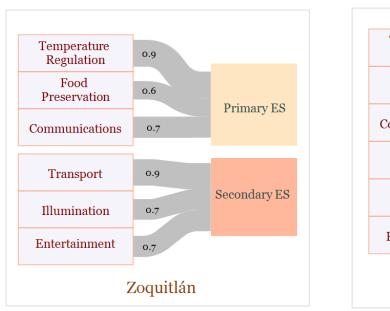
Results: ES and LS sample description (1)

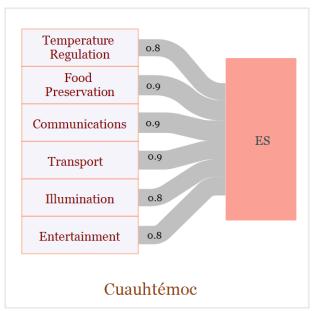

- Better general conditions of households at Cuauhtémoc reflected more clearly in some ES.
 - Entertainment (> 1 point)
 - Transportation and communications (\sim 0.8 points)
 - Food preservation, illumination and temperature reg. (< 0.5 points)


• LS results more comparable (< 0.4 points)


Results: ES and LS data description (2)

• LS: left-skewed at any income.




• ES: normal or right-skewed low income left-skewed at mid-higher incomes.

Results: simplification of ES into single constructs (PCA)

^{*}Components significant to the 95% C.I. from a parallel analysis

ES condensed into a single measure observed differences:

• At lower incomes (Zoquitlán), two components / at middle incomes (Cuauhtémoc), one.

Discussion: Preference for improving ES shifts from hierarchical to homogeneous?₁₅

Results: ES-LS associations

Low incomes:

- Less ES relevant to enhance LS levels
 Once income increase
- Stronger linkage between ES and LS
- Most important ES for LS levels:
- Transport and temperature regulation
- Entertainment (relevant once income increase)

Discussion:

More concern is placed on households features as income increase?

(e.g. entertainment taking place inside households in mid-incomes, in contrast to low incomes where it might be done outside).

CORRELATION ES-LS

Summary of main findings

Theory on energy services:

- Energy services at lower incomes do not bridge energy use and life satisfaction
- Only from mid incomes on, energy services become more important
- As income increase ES shift from two "hierarchical" groups to a single homogeneous one

Implications on policy (to enhance well-being levels):

- Low incomes: improve transportation services and ways to preserve temperature in households
- Mid incomes: focus more on other energy services (more important for well-being)

Further research

Improve detail of findings

- Further income levels
- Distinguish beween household types
- Detailed exploration of rural-urban contexts
- Intercultural differences

Energy services and methods

- Further set of ES
- Expand on direct vs indirect ES
- Path analyses and SEM

Acknowledgements: Environment Research and Technology Development Fund (S-16) of the MOEJ and Graduate School of Energy Science, Kyoto University

Thank you for your attention

Jordi Cravioto jordi-c@gst.ritsumei.ac.jp

http://www.ritsumei.ac.jp/~yamasue/

References:

- 1. Spencer, H. (1880). First principles. New York: A.L. Burt.
- 2. White, L. (1949). Energy and the evolution of culture. In The Science of Culture (pp. 363-93). New York: Farrar, Straus, Giroux.
- 3. Schurr, S.H. and Netscheret, B.C. (1960). *Energy in the American economy, 1850-1975.* Baltimore: Johns Hopkins University Press.
- 4. Naseri, H. (2000). *The relationship between energy and human development*. In IAOS Conference on Statistics, Development and Human Rights, Session C-Pa 6e, Montreux, CH.
- 5. Mazur, A. and Rosa, E.A. (1974). *Energy and lifestyle: Cross-national comparison of energy consumption and quality of life indicators*. Science, 1(86), 607-610.
- 6. Mazur, A. (2011). Does increasing energy or electricity consumption improve quality of life in industrial nations? Energy Policy, 39(5), 2568-2572.
- 7. Rosa, E.A., Machlis, G.E. and Keating, K.M. (1988). Energy and society. Annual Review of Sociology, 149-172.
- 8. Knight, K.W. and Rosa, E.A. (2011). *The environmental efficiency of well-being: A cross-national analysis.* Social Science Research, 40(3), 931-949.
- 9. Boardman, B. (1991). Fuel poverty: from cold homes to affordable warmth. Pinter Pub Limited.
- 10. Cravioto, J., Bakr, M., Aoyagi, S., Park, S. and Utama, N.A. (2011). *Community acceptance of nuclear power generation in Japan and relevant influencing factors*. In Clean Energy and Technology (CET), 2011 IEEE First Conference on (pp. 248-252). IEEE.
- 11. Cravioto, J., Yamasue, E., Okumura, H. and Ishihara, K.N. (2013). Road transport externalities in Mexico: Estimates and international comparisons. Transport Policy, 30, 63-76.
- 12. Modi, V., McDade, S., Lallement, D. and Saghir, J. (2006). Energy services for the millennium development goals. New York: Energy Sector Management Assistance Programme, United Nations Development Programme. UN Millennium Project and The World Bank.
- 13. Cravioto, J., Yamasue, E., Okumura, H. and Ishihara, K.N. (2014). Energy service satisfaction in two Mexican communities: A study on demographic, household, equipment and energy related predictors. Energy Policy, 73, 110-126.
- 14. Sovacool, B.K. (2011). Conceptualizing urban household energy use: Climbing the "Energy Services Ladder". Energy Policy, 39(3), 1659-1668.